Separate Science GCSE Revision Checklists

Chemistry PAPER 2

Name: _____

Science Teacher:

Chemistry 2 - Paper 5

SC3 - Atomic Structure	
Describe how Dalton's ideas about atoms have changed.	
Describe how the subatomic particles are arranged in an atom.	
Explain how atoms of different elements are different.	
Recall the charges and relative masses of the three subatomic particles.	
Explain why all atoms have no overall charge.	
Describe how the size of an atom compares to the size of its nucleus.	
State where most of the mass of an atom is found.	
State the meaning of atomic number.	
State the meaning of mass number.	
Describe how the atoms of different elements vary.	
State the number of electrons in an atom from its atomic number.	
Calculate the numbers of protons, neutrons and electrons using atomic and mass numbers.	
State what is meant by an isotope.	
Identify isotopes from information about the structure of atoms.	
Calculate the numbers of protons, neutrons and electrons using atomic numbers and mass numbers.	
Explain why the relative atomic mass of many elements is not a whole number.	
H Calculate the relative atomic mass of an element from the relative masses and abundances of its isotopes.	
SC4 - The Periodic Table	
Recall the chemical symbols of some common elements.	
Describe how Mendeleev arranged elements into a periodic table.	
Describe how Mendeleev predicted the existence and properties of some elements yet to be discovered.	
Explain how Mendeleev's early ideas were supported by later evidence.	
Explain some problems Mendeleev had when ordering the elements.	
Explain the meaning of the term 'atomic number'.	
Describe how the elements are arranged in the modern periodic table.	
Recall the positions of metals and non-metals in the periodic table.	
State what the term 'electronic configuration' means.	
Show electronic configurations in the form 2.8.1 and as diagrams.	
Predict the electronic configurations of the elements hydrogen to calcium.	
Explain the links between an element's position in the periodic table and its electronic configuration	

SC5 - Ionic Bonding	
Recall the formulae of simple ions.	
Explain how cations and anions are formed.	
Use dot and cross diagrams to explain how ionic bonds are formed.	
Explain the difference between an atom and an ion.	
Calculate the numbers of protons, neutrons and electrons in simple ions.	
Explain the formation of ions in groups 1, 2, 6 and 7 of the periodic table.	
Recall the formulae of common polyatomic ions, and the charges on them.	
Interpret the use of -ide and -ate endings in the names of compounds.	
Name ionic compounds using –ide and –ate endings.	
Work out the formula of an ionic compound from the formulae of its ions.	
Describe the structure of ionic compounds.	
Explain how ionic compounds are held together.	
Describe the properties of ionic compounds.	
Explain why ionic compounds have high melting points and high boiling points.	
Explain why ionic compounds conduct electricity when they are molten and in aqueous solution.	
Explain why ionic compounds do not conduct electricity as solids.	
Identify ionic compounds from data about their properties.	
SC6 - Covalent Bonding	
Explain how covalent bonds are formed.	
Recall the names of some common molecular elements.	
Recall the names of some common molecular compounds.	
State the bonding that is found in molecules.	
State the approximate size (order or magnitude) of atoms and small molecules.	
Explain the formation of covalent bonds using dot and cross diagrams.	
SC7 - Types of Substance	
Recall examples of common covalent, simple molecular compounds.	
Describe the general properties of covalent, simple molecular compounds.	
Explain why covalent, simple molecular compounds have low melting and boiling points.	
Explain why covalent, simple molecular compounds are poor conductors of electricity.	
Describe the structure of a polymer.	
Recall some allotropes of carbon.	
Describe the basic differences between covalent, simple molecules and giant covalent structures.	
Describe the structures of diamond, graphite, fullerenes and graphene.	

Describe the properties of diamond, graphite, fullerenes and graphene.	
Explain the properties and uses of diamond and graphite in terms of their structure and bonding.	
Explain the properties of fullerenes and graphene in terms of their structure and bonding.	
Describe the particles and how they are arranged in metals.	
Explain why metals are malleable.	
Explain why metals conduct electricity.	
Describe the typical properties of metals.	
Describe the typical properties of non-metals.	
Give examples of ionic; covalent, simple molecular; covalent, giant molecular; and metallic substances.	
Describe how the different types of bonds and structures are formed.	
Explain how the structure and bonding of a substance is linked to its physical properties. (Relative melting point and boiling point, relative solubility in water and ability to conduct electricity, as solids and in solution.)	
Explain why we use models to represent structure and bonding.	
Represent structures and bonding using a variety of different models (dot and cross, ball and stick, 2D, 3D).	
Describe the limitations of the different models used to represent structure and bonding (dot and cross, ball and stick, 2D, 3D).	
SC9 - Chemistry Calculations	
Calculate the relative formula mass of a substance from relative atomic masses.	
Calculate the empirical formula of a compound from the masses of the elements it contains.	
Explain the difference between an empirical formula and a molecular formula.	
Deduce the empirical formula from a molecular formula.	
Deduce the molecular formula for a compound from its empirical formula and its relative formula mass.	
Describe an experiment to determine the empirical formula for a compound.	
Explain the law of conservation of mass in a closed system.	
Explain the law of conservation of mass in a non-enclosed system.	
Calculate the mass of product formed from a given mass of reactant, using a balanced equation.	
Calculate the mass of a reactant needed to produce a given amount of product, using a balanced equation.	
Calculate the concentration of a solution in g dm-3.	
H Describe what is meant by a mole of particles.	
H Calculate the number of moles of particles in a given mass of a certain substance and vice versa.	
H Calculate the number of particles in a given number of moles or mass of a substance and vice versa.	
H Explain that the mass of a product formed in a reaction is controlled by the mass of reactant that is not in excess.	
H Deduce the balanced equation for a reaction from the masses of reactants and/or products.	

SC17 - Groups in the Periodic Table	I Know it!
Explain the classification of alkali metals, halogens and noble gases, into groups in the periodic table.	
Describe the main physical properties of alkali metals.	
Describe the reactions of lithium, sodium and potassium with water.	
Write word, balanced and H ionic equations (including state symbols) for the reactions of alkali metals.	
Describe the pattern of reactivity of the alkali metals.	
Explain how the electronic configurations of the atoms of alkali metals affect their reactivity.	
Recall the appearance of chlorine, bromine and iodine at room temperature.	
Describe the trends in colour, melting point and boiling point of chlorine, bromine and iodine down the group, and use these to predict physical properties of other halogens.	
Describe the chemical test for chlorine gas.	
Describe the trends in the reactions of halogens with metals, and use this to predict reactions of other halogens	
Write word and balanced chemical equations, including state symbols, for the reactions of halogens with metals.	
Describe hydrogen halides and their chemical properties.	
Describe the relative reactivity of halogens.	
Explain how the reactivity of halogens can be worked out from displacement reactions.	
Write balanced chemical equations, including state symbols, for the displacement reactions of halogens.	
H Explain how displacement reactions are examples of redox reactions.	
H Write ionic equations, including state symbols, for displacement reactions of halogens.	
Explain the order of reactivity of halogens (using electronic configurations).	
Explain why noble gases are chemically inert by referring to their electronic configuration.	
Describe uses of noble gases linked with their properties.	
Describe the trends in the physical properties of the noble gases.	
Use trends in physical properties to predict the physical properties of other noble gases.	
SC18 - Rates of Reaction	
Describe different changes that can occur as a reaction proceeds.	
Suggest different experimental methods to investigate rates of reaction (e.g. measurements of mass of reactants against time, volume of gas released against time, concentration of reactant or product against time).	
Use graphs of changes (in mass, volume or concentration of reactant or product) against time, to interpret what is happening during reactions.	
Explain what has to happen for reactions to take place.	
Explain why changes in the energy of particles affect rates of reaction.	
Explain why changes in the frequency of collisions between particles affect the rate of reaction.	

Explain why changes in temperature, concentration, surface area and pressure affect the rate of reaction (surface area for solids, pressure for gases only).	
Describe ways of speeding up or slowing down chemical reactions.	
Describe what a catalyst does.	
Explain how catalysts are useful.	
Explain what the activation energy of a reaction is.	
Explain how catalysts speed up chemical reactions.	
Describe what enzymes are.	
Name one or more examples of enzymes.	
SC19 - Heat Energy Changes in Chemical Reactions	
Recall some examples of exothermic and endothermic changes.	
Describe how heat changes in solution may be determined.	
Describe the differences between exothermic and endothermic changes.	
Describe exothermic and endothermic reactions in terms of energy changes when bonds are broken and formed.	
H Use bond energies to calculate energy changes in reactions.	
Explain the meaning of activation energy.	
Draw and label reaction profiles.	
SC20 - Fuels	
Recall the meaning of the term hydrocarbon.	
Describe the compounds found in crude oil.	
Describe the importance of crude oil for the petrochemical industry.	
Explain why crude oil is a finite resource.	
Recall the names of some common fossil fuels.	
Describe how crude oil is separated by fractional distillation.	
Explain how fractional distillation of crude oil works.	
Recall the names and uses of fractions from crude oil.	
Describe how fractions differ from each other.	
Explain why the properties of different fractions differ.	
Describe that oil fractions mostly contain alkanes.	
Describe the main features of an homologous series.	
Explain why alkanes form an homologous series.	
Describe the complete combustion of hydrocarbon fuels.	
Explain the production of harmful products during the incomplete combustion of hydrocarbon fuels.	
Explain why carbon monoxide is toxic.	
Describe the problems caused by incomplete combustion.	

Explain how some hydrocarbon fuels produce sulfur dioxide in use.	
Recall the names of the pollutants responsible for acid rain.	
Describe some effects of acid rain.	
Explain why oxides of nitrogen are produced when fuels are burned in engines.	
Evaluate hydrogen as an alternative fuel to petrol for cars.	
Describe what happens during cracking.	
Explain why alkanes are saturated and alkenes are unsaturated.	
Explain why cracking is necessary.	
SC21 - Earth and Atmosphere Science	
Describe how the Earth's early atmosphere was formed.	
State the names and relative amounts of the gases found in the Earth's early atmosphere.	
Draw conclusions from evidence about the Earth's early atmosphere.	
Explain how the oceans are thought to have formed.	
Describe how the formation of the oceans influenced the composition of the atmosphere.	
Explain how photosynthetic organisms (including plants) changed the composition of the atmosphere.	
State the chemical test for oxygen.	
Recall the names of significant greenhouse gases.	
Describe the processes involved in the greenhouse effect.	
Describe how human activity increases the concentration of greenhouse gases.	
Evaluate the correlation between atmospheric carbon dioxide concentrations and fossil fuel use.	
Evaluate the evidence for increased atmospheric greenhouse gas concentrations being part of the	
cause of global warming and climate change.	
Suggest possible effects on the climate of increased levels of carbon dioxide and methane.	
Describe how human activity leads to increased carbon dioxide levels.	
Describe how human activity leads to increased methane levels.	
Describe the projected effects of climate change.	
Describe how the potential harmful effects of climate change can be addressed and limited.	
SC22 - Hydrocarbons	
State the names, formulae and structures of the first four members of the alkane homologous series.	
Distinguish between saturated hydrocarbons and unsaturated hydrocarbons.	
State the names, formulae and structures of the first four members of the alkene homologous series.	
Define the term 'functional group' and describe the functional group in alkenes.	
Describe the similarities and differences between butane, but-1-ene and but-2-ene.	
Describe what an 'addition reaction' is.	
Describe the reaction of bromine with ethene and other alkenes.	
Recall how bromine water is used to distinguish between alkanes and alkenes.	

Explain how the bromine water test distinguishes between alkanes and alkenes.	
Recall the products of complete combustion of alkanes and alkenes.	
Explain why the products of the complete combustion of a hydrocarbon are carbon dioxide and water.	
SC23 – Alcohols and Carboxylic acids	
State the name and formula of the alcohol in alcoholic drinks.	
Describe how alcoholic drinks are made from carbohydrates.	
Describe how alcoholic drinks are made from carbohydrates.	
Write word equations for the formation of ethanol from carbohydrates.	
Write balanced equations for the formation of ethanol from carbohydrates.	
Explain how fractional distillation can be used to produce more concentrated alcohol solutions.	
State the names, formulae and structures of the first four members of the alcohol homologous series.	
State the functional group present in all alcohols.	
Describe some chemical reactions of alcohols.	
Explain why alcohols have similar chemical properties.	
Use the chemical properties of the first four alcohols to predict the properties of other alcohols.	
State the names, formulae and structures of the first four members of the carboxylic acid series.	
Recall the functional group present in all carboxylic acids.	
Recall that carboxylic acids can be formed by the oxidation of alcohols.	
Describe some chemical properties of carboxylic acids.	
Explain why carboxylic acids take part in similar chemical reactions.	
Use the properties of the first four carboxylic acids to predict the properties of other carboxylic acids.	
SC24 - Polymers	
Recall the meaning of the term polymer.	
Describe how ethene molecules join together to form poly(ethene).	
Describe how alkenes undergo addition polymerisation.	
Recall that DNA is a polymer made from four different monomers called nucleotides.	
Recall that starch is a polymer made from sugars.	
Recall that proteins are polymers made from amino acids.	
Describe how other addition polymers are formed from their monomers: poly(propene), poly(chloroethene) (PVC) and poly(tetrafluoroethene) (PTFE).	
Deduce the structure of a polymer from the structure of a monomer.	
Deduce the structure of a monomer from the structure of a polymer.	
Explain how the uses of a polymer are related to its properties and vice versa.	
H Explain what is meant by a condensation reaction.	
H Draw the structure of a molecule with two carboxylic acid groups.	

H Draw the structure of a molecule with two alcohol groups.	
H Draw the structure of a polyester.	
H Explain how a molecule of water is formed each time an ester link is formed.	
State the starting material for most synthetic polymers.	
Describe the problems associated with the production and disposal of synthetic polymers.	
Describe some advantages of recycling polymers.	
Describe some disadvantages of recycling polymers.	
Evaluate the advantages and disadvantages of recycling polymers.	
SC25 – Qualitative analysis: Tests for ions	
Recall flame test colours for some metal ions.	
Describe how to carry out flame tests.	
Describe the advantages of instrumental methods of analysis.	
Use flame photometer data to determine the concentration of metal ions in solution.	
Use flame photometer data to identify metal ion	
Explain why the test for a given ion must be unique to that ion.	
Recall some metal hydroxide precipitate colours.	
Describe how to identify metal ions using sodium hydroxide solution.	
Describe how to identify ammonium ions and ammonia.	
Describe how to identify carbonate ions.	
Describe how to identify carbon dioxide.	
Describe how to identify sulfate ions in solution.	
Recall the colours of silver halide precipitates.	
Describe how to identify halide ions in solution.	
SC26 – Bulk and surface properties of matter including nanoparticles	
Recall what glass ceramics and clay ceramics are.	
Use data to compare the physical properties of ceramics, polymers and metals.	
Explain why the properties of a material make it suitable for a given use.	
Select suitable materials for a particular purpose using given data.	
Recall what composite materials are.	
Give some examples of composite materials.	
Explain why the properties of a composite material make it suitable for a given use.	
Select suitable materials, including composite materials, for a particular purpose using given data.	
Recall what nanoparticles are.	
Compare the relative sizes of nanoparticles, atoms and molecules.	
Calculate the surface area to volume ratio of a nanoparticle.	

Relate the uses of nanoparticulate materials to their properties.	
Explain some possible risks associated with nanoparticles.	